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The statistical geometry of a system of hard spheres is discussed in terms of the volumes Vj
that lie with a sphere diameter, σ, of exactly j sphere centres. A site that has no sphere cen-
tre within σ is called a cavity site. We focus on the probability n00(r) that two sites separated
by r are both cavity sites. n00(0), n00(σ), and the limiting slope (d ln n00(r)/dr)r=0, are all known
in terms of the thermodynamic properties. The Vj and n00(r) are measured by computer sim-
ulation and an empirical expression, which satisfies the known exact relations, is shown to
represent n00(r) precisely in the range 0 ≤ r ≤ σ.
Keywords: Statistical geometry; Cavity correlations; Hard spheres; Thermodynamics; Fluids;
Computer simulation.

Boltzmann1 foresaw that the dynamic and thermodynamic properties of
simple fluids are largely determined by the repulsive forces between the
molecules and that attractions play a lesser role. He discussed a gas of hard
spheres, in which repulsions are represented by the geometrical condition
that spheres cannot overlap, thus reducing the task of understanding the
properties of simple fluids to its essence: statistical geometry. van der
Waals’ theory of the continuity of the liquid and gaseous states, and more
recent perturbation theories of fluids2,3, emphasise the essential correctness
of Boltzmann’s view, but, despite a century of effort, the central problem of
understanding the statistical geometry of hard spheres has still to be solved.

In this section we define some geometrical quantities, explain relations
between them, and show how they are related to the thermodynamic prop-
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erties. The following sections report computer simulation calculations of
some geometrical properties.

GEOMETRY

We consider a system of N hard spheres, each of diameter σ, with centres
confined to a D dimensional space of volume V. The space is taken to be
cubic in shape with periodic boundaries, so that the average structure about
any point is independent of position. Each sphere excludes other sphere
centres from the region within σ if its centre, as shown for discs (D = 2) in
Fig. 1. The statistical geometry is discussed in terms of the volumes Vj that
lie within σ of j, and only j, sphere centres4.

The space is subdivided, conceptually, into a lattice of V/ω very small
cells, or sites4–7 each of volume ω, and a configuration is specified by a list
of the N sites that locate a sphere centre. ω need not be specified more
precisely, because it cancels out of all measurable properties and the limit
ω → 0 can be taken implicitly. The number of configurations is denoted by
Ω = Ω(N,V,σ,ω). The variable list (N,V,σ,ω) is omitted where no ambiguity
arises.

Vj,k is the volume within σ of j, and only j, sphere centres in configura-
tion k, and Vj = 〈Vj,k〉 where 〈〉 denotes an average over the k = 1, 2...Ω con-
figurations6,7. Sj,k is the surface area of Vj,k and Sj = 〈Sj,k〉 . A site within Vj,k is
called a Vj site. nj ≡ Vj /V is the probability that a random point is in a Vj
site. A site that locates a sphere centre is called a c site. V0 sites are called
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FIG. 1
16 discs in a square box with periodic boundaries. Small circles of diameter σ show the discs.
Large circles of diameter 2σ show the exclusion discs. Regions overlapped by j = 1 or 3 exclu-
sion discs are shaded



cavity sites, because a sphere can be added with its centre in V0,k without
overlapping the other spheres. Boltzmann1 called V0,k the “available space”.

ρ ≡ N/V is the number of spheres per unit volume, B2 is the second virial
coefficient, m is the maximum number of sphere centres that can fit within
σ of a point (m = 2, B2 = σ, D = 1; m ≤ 6, B2 = πσ2/2, D = 2; m ≤ 12, B2 =
2πσ3/3, D = 3).

For any configuration, and for the configurational averages,
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nij(r) is defined as the probability that two sites separated by distance r are
Vi and Vj sites. Site–site correlation functions gij(r) = gji(r) are defined by
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Kirkwood8 noted that a cavity site and a sphere centre are equivalent in the
sense that their effect on the rest of the system is to exclude other sphere
centres from a region of radius σ. The distribution of spheres about a cavity
site (in a system of N spheres) is therefore the same as the distribution
about a sphere centre (in a system of N + 1 spheres). The conditional
probability that a site at distance r from a V0 site is a Vj site is therefore4 (when
N >> 1)
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The probability that a site on the outside surface of an exclusion sphere is a
Vj site is the limit of n g rj cj ( ) as r → σ from r > σ, which is, from Eq. (5),
n gj j0 ( )σ . The total area of all the exclusion surfaces is 2NDB2/σ so the sur-
face area of Vj is

S NDB n gj j j= ( / ) ( ) .2 2 0σ σ (6)

Figure 2 shows the volume excluded to sphere centres by a pair of cavity
sites separated by distance r. The volume excluded is 2B2 when r = 0 and
4B2 when r > 2σ. The change in the volume excluded when the cavity sites
are moved apart from r = 0 to r ≤ 2σ, is
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where x = r/2σ.
Meeron and Siegert9 provide an elegant statistical mechanical analysis of

the distribution functions for multiple cavities in fluids with continuous
potentials, and they specialise their results to the case, considered here, of
two cavities in a hard sphere fluid. The generality and rigour of their analy-
sis is not required to understand the relations used in this paper, so we give
simpler explanations of some of their results (Eqs (8)–(11) below) to show
that they follow directly from geometrical considerations, without any re-
course to statistical mechanics.
The conditional probability, n g r0 00 ( ), that a site at distance r from a cavity
site is also a cavity site, must tend to unity as r → 0, so4

n g0 00 0( ) = 1 . (8)
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FIG. 2
The region excluded to sphere centres by two cavity sites separated by r. Each cavity site ex-
cludes sphere centres from a region of radius σ. The shaded region shows the change, ∆V(r), in
the volume excluded when r is increased from 0 to r (Eq. (7))



The density of sphere centres within the shaded volume ∆V(r) shown in
Fig. 2 can be approximated by the density ρg0c(σ) = ρg00(σ) at the surface of a
single cavity when ∆V(r) is small. The conditional probability, n00(r)/n0 =
n g r0 00 ( ), that no centre lies in ∆V(r) is then 1 – ρg00(σ)∆V(r). The approxima-
tion becomes exact as r → 0 so

n g r g V r r0 00 001 0( ) ( ) ( ) .= − →ρ σ ∆ as (9)

Taking logarithms of both sides of Eq. (9), noting that ln (1 – x) → –x as x → 0,
gives

ln[ ( )] ( ) ( ) .n g r g V r r0 00 00 0= − →ρ σ ∆ as (10)

Differentiating Eq. (10) gives the slope at the origin

( ln[ ( )]/ ) ( )( ( )/ ) .d d d dn g r r g V r rr r0 00 0 00 0= == − ρ σ ∆ (11)

Meeron and Siegert9 show that Eq. (10) is exact for hard rods in one dimen-
sion, for all r ≤ 2σ, and that it yields the exact equation of state.

THERMODYNAMICS

With the geometrical terminology in place, we now explain some well
known9–12 relations between the geometrical and thermodynamic proper-
ties. The relations are explained with minimal use of statistical mechanics.
They follow from classical thermodynamics and Boltzmann’s equation
S = kB ln W, where kB is the Boltzmann constant and W counts the number
of distinct microstates that contribute to the thermodynamic state1.

The excess entropy, relative to an ideal gas with the same N, V and energy U, is

∆ Ω ΩS k k= −B B igln ln . (12)

For the ideal gas, Ωig = Ωig(N,V,σ = 0,ω) = (V/ω)N/N!. The kinetic energy, U,
of the spheres is the same as that of the ideal gas, and an ideal gas particle
has the same mass as a sphere, so the contribution to W from the many dis-
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tinct ways of distributing the kinetic energy among the particles1 is the
same in both cases and does not contribute to the difference ∆S.

For an isolated (N,V,U) system the chemical potential is µ = –T(∂S/∂N)V,U,
where T is the temperature, and the excess chemical potential is

∆ ∆ Ω Ωµ ∂ ∂ ∂ ∂= − = −T S N k T NV U V U( / ) ( ln[ / ]/ ) ., ,B ig (13)

The derivative, ( ln / ) ,∂ ∂Ω N V U , is evaluated by noting that there are V0,k/ω
sites where another sphere can be added to configuration k of N spheres.
The number of configurations of N + 1 spheres is the number of ways of
adding a sphere to each configuration of N spheres, summed over all con-
figurations, and divided by N + 1 because the added sphere is not distin-
guishable,
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Equation (14) gives the derivative
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For the ideal gas V0 = V, so Eqs (13) and (15) yield

− = =∆ Ω Ωµ ∂ ∂/ ( ln[ / ]/ ) ln[ / ] .,k T N V VV UB ig 0 (16)

The factor (N + 1)ω in Eq. (15) cancels out in Eq. (16), so the result is the
same whether the spheres are treated as distinguishable or indistinguish-
able, and the limit ω → 0 can be taken implicitly.

Equation (16), together with the definition n0 ≡ V0/V and Eq. (8), gives
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which means that all the excess thermodynamic properties can be expressed
in terms of the geometrical parameters n0 or g00(0).
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Boltzmann1 calculated the chance that a pair of spheres are in contact by
considering the probability that a sphere added to V0,k contacts the surface
S0,k, which is clearly proportional to S0,k/V0,k. A variation on Boltzmann’s
argument is used here to relate the pressure, P, to S0/V0.

The set of all configurations of N spheres can be written as the sum of
two sets

Ω = Ω1 + Ω2 (18)

where Ω1 is the number of configurations in which no spheres are in con-
tact and Ω2 is the number of configurations with at least one pair of spheres
in contact. A pair of spheres are said to be in contact when their centres are
separated by σ to σ + δσ. δσ cancels out of the result so the limit δσ → 0 can
be taken implicitly. The number of configurations in which no pair is in
contact is the same as the number of configurations of a system of N
spheres with diameter σ + δσ,

Ω Ω Ω Ω1 = + = +( , , , ) ( / ) .,N V N Vσ δσ ω ∂ ∂σ δσ (19)

To evaluate the derivative in Eq. (19) we use the thermodynamic relation
P T S V N U= ( / ) ,∂ ∂ and Eq. (12), which give
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y ≡ ∆S/NkB is an intensive quantity that depends only on the density variable
x ≡ NσD/V, regardless of whether V or σ is the independent variable. With the
straightforward manipulation ∂ ∂σ = (∂ ∂ )(∂ ∂ )(∂ ∂σ)y y V V x x/ / / / = −( / ) /DV y Vσ ∂ ∂ ,
and noting that x = 0 for the ideal gas, Eq. (20) gives

( ln / ) ( / )( / ) .,∂ ∂σ σΩ N V ND PV Nk T= − −B 1 (21)

Equations (19) and (21) yield

Ω Ω1 1 1= − −[ ( / )( / ) ] .ND PV Nk Tσ δσB (22)
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To calculate Ω2 we first consider the number of ways, Ω3, of adding an N-th
sphere to a system of N – 1 spheres with the constraint that it contacts an-
other sphere. Ω3 is the number of available sites within δσ of the surface of
the available space S0,k(N – 1) , summed over all Ω(N – 1) configurations
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where the last step uses Eq. (14).
To relate Ω2 to Ω3, consider a particular configuration, k, of N spheres,

which has sphere centres at sites labelled a and b. The spheres are not dis-
tinguishable, but sites are distinct. Removing a sphere from site a yields a
different configuration of N – 1 spheres than removing a sphere from site b.
Thus there are two distinct configurations of N – 1 spheres, one with site a
empty, the other with site b empty, to which an N-th sphere can be added
to the empty site to yield the same configuration, k, of N spheres. The sum
in Eq. (23) therefore counts two distinct additions that yield the same con-
figuration, k, of N spheres. The number of configurations containing at
least one contacting pair is therefore

Ω Ω Ω2 3
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0

2
2

= =/
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V
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where the small difference between N and N – 1 is neglected.
Substituting Eqs (22) and (24) into Eq. (18) gives4,6
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Equation (6), with j = 0, gives
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Equations (25) and (26) yield the familiar10,12 virial equation for the hard
sphere pressure

PV
Nk T

B g
B

= +1 2 00ρ σ( ) . (27)

Thus, the relations between geometry and thermodynamics, Eqs (17), (25)
and (27), follow from classical thermodynamics and statistical geometry
without any use of statistical mechanics beyond Boltzmann’s S = kB ln W.

EXPERIMENTAL

Fluids of N = 13500 spheres were simulated by the molecular dynamics
method13, in a cubic cell with periodic boundaries. After compressing14 or
decompressing an equilibrated fluid from a nearby density, it was equili-
brated for 250N collisions and configurations were sampled during the next
1000N collisions. Neighbour lists were made of all pairs of spheres with
centres separated by less than 2.1σ and the lists were remade before any sphere
moved σ/2, so that only listed pairs can collide. The lists also facilitate the
calculation of the n g rj cj ( ) so, for convenience, we sampled configurations
whenever the lists were remade.

Measurements were made at density z = ρσ3 2/ (the density relative to
the close packed face-centred cubic crystal) from z = 0.3 to z = 0.72. The
equilibrium freezing density15–17 is zf ≈ 0.663 and the fluid is near its
metastable extremity at z = 0.72. It freezes too quickly15 to allow precise
measurements when z > 0.73.

The probability n g rj cj ( ), that a site at distance r from a sphere centre is a
Vj site, was measured in the range 0 < r ≤ σ. The method used to calculate
n g rj cj ( ) is described in detail by Ballance and Speedy18. A randomly oriented
line of length 2σ (the diameter of an exclusion sphere) was centred on each
sphere centre and the number of sphere centres within σ of each of 200
equally spaced points on the line was counted. To improve the statistics the
line was randomly reoriented 9 times for each sphere in each configuration
sampled. In that way we sampled NS = 108.1±0.5 points at each of 100 radial
distances r from a sphere centre. The standard sampling error (SSE) in the
calculation of n g rj cj ( )

SSE( ( ))
( ) ( ( ))

/

n g r
n g r n g r

Nj cj
j cj j cj

S

=
−









2 1 2

(28)
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is about 0.015% when n g rj cj ( ) ≈ 0.1, increasing to 45% when n g rj cj ( ) ≈ 10–7.
The results are more precise and extensive than previous calculations18–20 of
n g r0 00 ( ).

Simpson’s rule was used for the integrals jV N r n g r rj j cj= ∫ 4 2

0
π

σ
( )d to get

the nj, j ≥ 1, and n0 was obtained from Eq. (1). The Sj were calculated using
Eqs (5) and (6).

RESULTS AND DISCUSSION

Figure 3 shows how nj(z) varies with the density z. nj(z) is known exactly in
one dimension4, rough estimates have been made for hard discs4 and some
previous simulation results are available for spheres18,21.

The probability distribution for finding exactly j sphere centres within a
spherical region of radius σ at density z, nj(z), would yield n0(z) and the
thermodynamic properties through Eq. (17). The distribution nj(z) vs j is ap-
proximately21 Gaussian in j, but the Gaussian approximation is poor when
nj is small. Crooks and Chandler21 and Rowlinson and Woods22 discuss al-
ternative distributions, one of which21 is shown to predict the chemical po-
tential quite accurately when z < 0.4, but not at higher densities, where
n0(z) is very small (Fig. 3). Discontinuities in nj(z) vs z across the freezing

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 3, pp. 344–357

Statistical Geometry 353

FIG. 3
The probability nj, that a site lies within j and only j sphere centres, versus the density z. Num-
bers show the value of j. Solid lines: fluid. Dashed lines: an fcc crystal of N = 1372 spheres with
no vacancies. zf and zm show the equilibrium freezing and melting densities. Lines are polyno-
mial fits



transition (Fig. 3) show that the form of the distribution is different in the
fluid and crystalline phases.

Results for the cavity–cavity function n g r0 00 ( ) are shown in Fig. 4. Lines
show the empirical form

ln[ ( )] ( )[ ( ) ] .n g r V r a a V r0 00 1 2= − +∆ ∆ γ (29)

Equations (10), (11), (17), (27) and (29) are satisfied exactly with

a g PV Nk T B1 00 21= = −ρ σ( ) ( / )/B (30)

and

a k T g g V V2 00 00
1= − − +{ / ln[ ( )] ( ) ( )}/ ( ) .∆ ∆ ∆µ σ ρ σ σ σ γ

B (31)

The value γ = 3 was found, empirically, to represent n g r0 00 ( ), 0 ≤ r ≤ σ, pre-
cisely. The lines shown in Fig. 4 were drawn by calculating a1 and a2 from
an accurate empirical equation15 for PV/NkBT vs z, which also gives ∆µ/kBT
by the thermodynamic integration
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FIG. 4
ln [n g r0 00( )] versus r. n g r0 00( ) is the probability that a site at distance r from a cavity site is also a
cavity site. Numbers show the density z. Lines represent Eq. (29)



∆µ/ ( / ) ( / ) ln .k T PV Nk T PV Nk T z
z

B B B d= − + −∫1 1
0

(32)

The smallest value shown in Fig. 4 is ln [n g r0 00 ( )] ≈ –15, where Eq. (28) gives
a sampling error of about 0.2 in ln [n g r0 00 ( )], or twice the dot size in Fig. 4.
For the other points, the sampling error is smaller than the dot size.

Figure 5 shows the deviation of the computed n g r0 00 ( ) from values calcu-
lated from Eq. (29). Most deviations are larger than the sampling errors esti-
mated from Eq. (28). The systematic deviation evident at the lowest density
studied, z = 0.3, is partly explained by the fact that configurations were
sampled when the neighbour lists were remade, at which time a pair of
spheres are in contact, rather than at a random time when the probability
that a pair are in contact is small, particularly at low density. A rough esti-
mate of the magnitude of that bias accounts for most of the systematic de-
viations shown at z = 0.3 in Fig. 5, and suggests that the bias is negligible
when z > 0.5.

Equation (29) has obvious flaws. First, because it is analytic, it cannot
show the discontinuities in the derivatives9 that occur whenever another
sphere centre can fit within ∆V(r) as r increases. Second, extrapolating
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FIG. 5
Deviation of n g r0 00( ) from Eq. (29) (amplified by 10000) versus r. +, z = 0.3; �, z = 0.5; �, z = 0.6; ×,
z = 0.65; �, z = 0.7; �, z = 0.72



Eq. (29), with γ = 3, predicts that n g r0 00 ( ) decreases monotonically in the
range 0 ≤ r ≤ 2σ and does not show the minimum23 in gcc(r) = g00(r) in the
range σ ≤ r ≤ 2σ.

Heyes et al.24 report precise calculations of the sphere–sphere radial distri-
bution function, gcc(r), r > σ, and the slope (d ln gcc(r)/dr)r=σ at the contact
distance, for densities z ≤ 0.716. Figure 6 shows that their results are repre-
sented, within the scatter, by the values of (d ln g00(r)/dr)r=σ calculated from
Eq. (29). This confirms that, although n g r0 00 ( ) is too small to be measured
precisely when r ≈ σ and z ≥ 0.7 (Fig. 4), Eq. (29) is accurate in that region.

Meeron and Siegert9 developed a hierarchy of integral equations relating
the distribution function for n cavities to the distribution function for n + 1
cavities and they used an approximate closure to derive an equation of
state. Smith and colleagues25,26 follow a similar approach to predict the
equation of state and n g r0 00 ( ). Their prediction of n g r0 00 ( ) agrees26 with ear-
lier computed values20 of n g r0 00 ( ) to within the computational uncertain-
ties. A direct comparison of their predicted n g r0 00 ( ) (calculated from data in
Table 1 of ref.26) with our more precise computed values is not possible be-
cause the densities differ, however, the deviations of their predicted val-
ues26 from Eq. (29) are larger than the deviations of our computed values
from Eq. (29) at nearby densities.
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FIG. 6
–d ln [g(r)]/dr at r = σ, versus the density z. Crosses show data from Heyes et al.24 Dots show
values from Smith et al.26 The line shows –d ln [n g r0 00( )]/dr at r = σ from Eq. (29)



CONCLUSION

In summary, the cavity–cavity correlation function g00(r) is of interest
because g00(0) and g00(σ) are related to each other through Eqs (17) and (27)
and the thermodynamic relation between the chemical potential and the
pressure9 (e.g., Eq. (32)). One more independent relation between them would
yield the equation of state for hard spheres9. The simple empirical Eq. (29)
represents our computed values of g00(r) precisely in the range 0 ≤ r ≤ σ. It
can be used to guide, and to test, attempts to find another relation between
g00(0) and g00(σ).

We thank D. Heyes for supplying the data shown in Fig. 6. R. K. Bowles thanks NSERC and CFI for
support.
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